Files
MIS-Contro-Tower/app/api/machines/[machineId]/route.ts
Marcelo Dares 398fb01c21 MVP
2025-12-18 22:22:20 +00:00

309 lines
8.0 KiB
TypeScript

import { NextResponse } from "next/server";
import type { NextRequest } from "next/server";
import { prisma } from "@/lib/prisma";
import { requireSession } from "@/lib/auth/requireSession";
function normalizeEvent(row: any) {
// -----------------------------
// 1) Parse row.data safely
// data may be:
// - object
// - array of objects
// - JSON string of either
// -----------------------------
const raw = row.data;
let parsed: any = raw;
if (typeof raw === "string") {
try {
parsed = JSON.parse(raw);
} catch {
parsed = raw; // keep as string if not JSON
}
}
// data can be object OR [object]
const blob = Array.isArray(parsed) ? parsed[0] : parsed;
// some payloads nest details under blob.data
const inner = blob?.data ?? blob ?? {};
const normalizeType = (t: any) =>
String(t ?? "")
.trim()
.toLowerCase()
.replace(/_/g, "-");
// -----------------------------
// 2) Alias mapping (canonical types)
// -----------------------------
const ALIAS: Record<string, string> = {
// Spanish / synonyms
macroparo: "macrostop",
"macro-stop": "macrostop",
macro_stop: "macrostop",
microparo: "microstop",
"micro-paro": "microstop",
micro_stop: "microstop",
// Node-RED types
"production-stopped": "stop", // we'll classify to micro/macro below
// legacy / generic
down: "stop",
};
// -----------------------------
// 3) Determine event type from DB or blob
// -----------------------------
const fromDbType =
row.eventType && row.eventType !== "unknown" ? row.eventType : null;
const fromBlobType =
blob?.anomaly_type ??
blob?.eventType ??
blob?.topic ??
inner?.anomaly_type ??
inner?.eventType ??
null;
// infer slow-cycle if signature exists
const inferredType =
fromDbType ??
fromBlobType ??
((inner?.actual_cycle_time && inner?.theoretical_cycle_time) ||
(blob?.actual_cycle_time && blob?.theoretical_cycle_time)
? "slow-cycle"
: "unknown");
const eventTypeRaw = normalizeType(inferredType);
let eventType = ALIAS[eventTypeRaw] ?? eventTypeRaw;
// -----------------------------
// 4) Optional: classify "stop" into micro/macro based on duration if present
// (keeps old rows usable even if they stored production-stopped)
// -----------------------------
if (eventType === "stop") {
const stopSec =
(typeof inner?.stoppage_duration_seconds === "number" && inner.stoppage_duration_seconds) ||
(typeof blob?.stoppage_duration_seconds === "number" && blob.stoppage_duration_seconds) ||
(typeof inner?.stop_duration_seconds === "number" && inner.stop_duration_seconds) ||
null;
// tune these thresholds to match your MES spec
const MACROSTOP_SEC = 300; // 5 min
eventType = stopSec != null && stopSec >= MACROSTOP_SEC ? "macrostop" : "microstop";
}
// -----------------------------
// 5) Severity, title, description, timestamp
// -----------------------------
const severity =
String(
(row.severity && row.severity !== "info" ? row.severity : null) ??
blob?.severity ??
inner?.severity ??
"info"
)
.trim()
.toLowerCase();
const title =
String(
(row.title && row.title !== "Event" ? row.title : null) ??
blob?.title ??
inner?.title ??
(eventType === "slow-cycle" ? "Slow Cycle Detected" : "Event")
).trim();
const description =
row.description ??
blob?.description ??
inner?.description ??
(eventType === "slow-cycle" &&
(inner?.actual_cycle_time ?? blob?.actual_cycle_time) &&
(inner?.theoretical_cycle_time ?? blob?.theoretical_cycle_time) &&
(inner?.delta_percent ?? blob?.delta_percent) != null
? `Cycle took ${Number(inner?.actual_cycle_time ?? blob?.actual_cycle_time).toFixed(1)}s (+${Number(inner?.delta_percent ?? blob?.delta_percent)}% vs ${Number(inner?.theoretical_cycle_time ?? blob?.theoretical_cycle_time).toFixed(1)}s objetivo)`
: null);
const ts =
row.ts ??
(typeof blob?.timestamp === "number" ? new Date(blob.timestamp) : null) ??
(typeof inner?.timestamp === "number" ? new Date(inner.timestamp) : null) ??
null;
const workOrderId =
row.workOrderId ??
blob?.work_order_id ??
inner?.work_order_id ??
null;
return {
id: row.id,
ts,
topic: String(row.topic ?? blob?.topic ?? eventType),
eventType,
severity,
title,
description,
requiresAck: !!row.requiresAck,
workOrderId,
};
}
export async function GET(
_req: NextRequest,
{ params }: { params: Promise<{ machineId: string }> }
) {
const session = await requireSession();
if (!session) {
return NextResponse.json({ ok: false, error: "Unauthorized" }, { status: 401 });
}
const { machineId } = await params;
const machine = await prisma.machine.findFirst({
where: { id: machineId, orgId: session.orgId },
select: {
id: true,
name: true,
code: true,
location: true,
heartbeats: {
orderBy: { ts: "desc" },
take: 1,
select: { ts: true, status: true, message: true, ip: true, fwVersion: true },
},
kpiSnapshots: {
orderBy: { ts: "desc" },
take: 1,
select: {
ts: true,
oee: true,
availability: true,
performance: true,
quality: true,
workOrderId: true,
sku: true,
good: true,
scrap: true,
target: true,
cycleTime: true,
},
},
},
});
if (!machine) {
return NextResponse.json({ ok: false, error: "Not found" }, { status: 404 });
}
const rawEvents = await prisma.machineEvent.findMany({
where: {
orgId: session.orgId,
machineId,
},
orderBy: { ts: "desc" },
take: 100, // pull more, we'll filter after normalization
select: {
id: true,
ts: true,
topic: true,
eventType: true,
severity: true,
title: true,
description: true,
requiresAck: true,
data: true,
workOrderId: true,
},
});
const normalized = rawEvents.map(normalizeEvent);
const ALLOWED_TYPES = new Set([
"slow-cycle",
"microstop",
"macrostop",
"oee-drop",
"quality-spike",
"performance-degradation",
"predictive-oee-decline",
]);
const events = normalized
.filter((e) => ALLOWED_TYPES.has(e.eventType))
// keep slow-cycle even if severity is info, otherwise require warning/critical/error
.filter((e) =>
["slow-cycle", "microstop", "macrostop"].includes(e.eventType) ||
["warning", "critical", "error"].includes(e.severity)
)
.slice(0, 30);
const rawCycles = await prisma.machineCycle.findMany({
where: { orgId: session.orgId, machineId },
orderBy: { ts: "desc" },
take: 200,
select: {
ts: true,
cycleCount: true,
actualCycleTime: true,
theoreticalCycleTime: true,
workOrderId: true,
sku: true,
},
});
// chart-friendly: oldest -> newest + numeric timestamps
const cycles = rawCycles
.slice()
.reverse()
.map((c) => ({
ts: c.ts, // keep Date for “time ago” UI
t: c.ts.getTime(), // numeric x-axis for charts
cycleCount: c.cycleCount ?? null,
actual: c.actualCycleTime, // rename to what chart expects
ideal: c.theoreticalCycleTime ?? null,
workOrderId: c.workOrderId ?? null,
sku: c.sku ?? null,
}
));
const latestKpi = machine.kpiSnapshots[0] ?? null;
// rawCycles is ordered DESC, so [0] is the most recent cycle row
const latestCycleIdeal = rawCycles[0]?.theoreticalCycleTime ?? null;
// REAL effective value (not mock): prefer KPI if present, else fallback to cycles table
const effectiveCycleTime = latestKpi?.cycleTime ?? latestCycleIdeal ?? null;
return NextResponse.json({
ok: true,
machine: {
id: machine.id,
name: machine.name,
code: machine.code,
location: machine.location,
latestHeartbeat: machine.heartbeats[0] ?? null,
latestKpi: machine.kpiSnapshots[0] ?? null,
effectiveCycleTime
},
events,
cycles
});
}