This commit is contained in:
Marcelo
2025-11-24 12:19:36 -06:00
parent 8892c74b98
commit 087fff89e1
10 changed files with 3322 additions and 1 deletions

198
optimization_prompt.txt Normal file
View File

@@ -0,0 +1,198 @@
# Backend Optimization Requirements for KPI Tracking System
## Context
This Node-RED application tracks manufacturing KPIs (OEE, Availability, Performance, Quality) for a production line. The system monitors machine cycles, work orders, and production metrics. These optimizations address data persistence, session management, and accurate downtime tracking.
## Critical Issues to Address
### Issue 1: Data Persistence (Option A - Database Storage)
**Problem:** Timing data and context variables are lost on crash or reboot, making it impossible to restore sessions.
**Solution:** Implement database persistence for timing and context data
- Create a new table in the database called `session_state` or `global_context`
- Store the following timing data:
- `productionStartTime`
- `operatingTime`
- `lastUpdateTime`
- `trackingEnabled` status
- `cycleCount`
- `activeWorkOrder` details
- Any other critical global/flow context variables
**Implementation Requirements:**
1. On system startup, check if there's existing session data in the database
2. Restore session state from database if found
3. Continuously sync critical timing variables to database (implement throttled writes to avoid database overload - e.g., update every 5-10 seconds or on state changes)
4. On clean shutdown or work order completion, ensure final state is written
5. On crash recovery, prompt user if they want to restore the previous session or start fresh
**Database Schema Example:**
```sql
CREATE TABLE session_state (
id INTEGER PRIMARY KEY AUTOINCREMENT,
session_id TEXT UNIQUE,
production_start_time INTEGER,
operating_time REAL,
last_update_time INTEGER,
tracking_enabled INTEGER,
cycle_count INTEGER,
active_work_order_id TEXT,
created_at INTEGER,
updated_at INTEGER,
is_active INTEGER DEFAULT 1
);
```
### Issue 2: Cycle Count Capping
**Problem:** Need to prevent cycle counts from exceeding reasonable limits.
**Solution:** Implement a cap at 100 cycles
- When cycle count reaches 100, either:
- Stop accepting new cycles and alert the operator
- OR automatically prompt for work order completion
- Add validation in the cycle counting logic
- Display warning in UI when approaching the cap (e.g., at 90+ cycles)
### Issue 3: Hardware Irregularity Handling
**Problem:** Real hardware will be used and may have irregular behavior/timing.
**Solution:** Design system to handle and track irregularities
- Log irregular cycle times (cycles that deviate significantly from average)
- Track unexpected state changes
- Store metadata about irregular events for later analysis
- This data will help diagnose:
- Unplanned production stops
- Slower than normal cycles
- Patterns in machine behavior
**Implementation Requirements:**
1. Calculate rolling average cycle time
2. Flag cycles that are >20% slower/faster than average
3. Store flagged cycles with timestamps in database
4. Create a separate table for anomaly tracking:
```sql
CREATE TABLE cycle_anomalies (
id INTEGER PRIMARY KEY AUTOINCREMENT,
work_order_id TEXT,
cycle_number INTEGER,
expected_time REAL,
actual_time REAL,
deviation_percent REAL,
timestamp INTEGER,
notes TEXT
);
```
### Issue 4: Intelligent Downtime Categorization
**Problem:** Not all stops should count as downtime (e.g., lunch breaks vs machine issues).
**Solution:** Implement stop reason prompt and categorization
- When STOP button is clicked, immediately show a prompt asking "Why are you stopping?"
- Provide categorized options:
- **Planned Stops** (don't affect downtime):
- Lunch break
- Scheduled break
- Shift change
- Planned maintenance
- **Unplanned Stops** (count as downtime, affect Availability):
- Machine malfunction
- Material shortage
- Quality issue
- Operator error
- Other (with text input)
**Implementation Requirements:**
1. Modify "Work Order buttons" function to intercept "stop" command
2. Display modal/prompt with categorized options
3. Store stop reason in database with timestamp
4. Only accumulate downtime for unplanned stops
5. Create stop_events table:
```sql
CREATE TABLE stop_events (
id INTEGER PRIMARY KEY AUTOINCREMENT,
work_order_id TEXT,
stop_time INTEGER,
resume_time INTEGER,
duration INTEGER,
reason_category TEXT, -- 'planned' or 'unplanned'
reason_detail TEXT,
affects_availability INTEGER,
notes TEXT
);
```
### Issue 5: Session Management and Pattern Tracking
**Problem:** Need to track production patterns and identify when sessions start/stop.
**Solution:** Create new session each time RESUME is clicked
- Each START/RESUME creates a new production session
- Track session metadata for pattern analysis
- Add time tracking columns to identify:
- When production occurs
- Unexpected breaks
- Patterns (e.g., breaks at certain hours)
- Session duration trends
**Implementation Requirements:**
1. Generate unique session_id on each START/RESUME
2. Store session metadata in new table:
```sql
CREATE TABLE production_sessions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
session_id TEXT UNIQUE,
work_order_id TEXT,
start_time INTEGER,
end_time INTEGER,
duration INTEGER,
cycles_completed INTEGER,
reason_for_start TEXT, -- 'initial_start', 'resume_after_planned', 'resume_after_unplanned'
reason_for_end TEXT, -- 'planned_stop', 'unplanned_stop', 'work_order_complete'
operating_time REAL,
downtime REAL,
created_at INTEGER
);
```
3. Add time tracking columns to work_orders table:
```sql
ALTER TABLE work_orders ADD COLUMN total_sessions INTEGER DEFAULT 0;
ALTER TABLE work_orders ADD COLUMN total_operating_time REAL DEFAULT 0;
ALTER TABLE work_orders ADD COLUMN total_downtime REAL DEFAULT 0;
ALTER TABLE work_orders ADD COLUMN avg_session_duration REAL DEFAULT 0;
```
4. On RESUME, log the previous session and start a new one
5. Track cumulative metrics across all sessions for the work order
6. Build analytics to identify:
- Peak production times
- Frequent break times
- Session duration patterns
- Correlation between session length and performance
## Implementation Priority
Since these are backend fixes affecting ~1% of Availability KPI accuracy, and UI presentation is the immediate priority:
**Phase 1 (Later):** Implement Issues 1, 4, 5 (data persistence, stop categorization, session tracking)
**Phase 2 (Later):** Implement Issues 2, 3 (cycle capping, irregularity tracking)
**Phase 3 (Later):** Build analytics dashboard for pattern analysis
## Key Functions to Modify
1. **Machine cycles function** - Add database sync for timing data
2. **Work Order buttons function** - Add session management, stop reason prompt
3. **Database initialization** - Add new tables
4. **Startup routine** - Add session recovery logic
5. **Availability calculation** - Exclude planned stops from downtime calculation
## Expected Outcome
- Data persists through crashes/reboots
- Accurate downtime vs planned stop tracking
- Session-based production history for pattern analysis
- Foundation for predictive maintenance and efficiency optimization
- Ability to identify and mitigate unexpected production issues
## Notes
- All timing should use Unix timestamps (milliseconds) for consistency
- Implement database connection pooling for performance
- Add error handling for database operations
- Consider adding a "notes" field to most tables for operator comments
- Build admin interface to review historical sessions and patterns